Essentiality and function of WalK/WalR two-component system: the past, present, and future of research*

Author:

Takada Hiraku12,Yoshikawa Hirofumi2

Affiliation:

1. Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan

2. Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan

Abstract

Abstract The WalK/WalR two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved in gram-positive bacteria, including several important pathogens. The WalK/WalR TCS appears to be involved in the growth of most bacterial species encoding it. Previous studies have indicated conserved functions of this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism. Because of such effects on essential functions, this system is considered a potential target for anti-infective therapeutics. In this review, we discuss the role of WalK/WalR TCS in different bacterial cells, focusing on the function of the genes in its regulon as well as the variations in walRK operon structure, its auxiliary proteins, and the composition of its regulon. We also discuss recent experimental data addressing its essential function and the potential type of signal being sensed by B. subtilis. This review also focuses on the potential future research.

Funder

H2020 Society

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3