The expression of Transmembrane Protein 100 is regulated by alterations in calcium signaling rather than endoplasmic reticulum stress

Author:

Kuboyama Ayane1,Sasaki Takashi1,Shimizu Makoto1,Inoue Jun1,Sato Ryuichiro123

Affiliation:

1. Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo , Tokyo, Japan

2. Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduated School of Agricultural and Lice Sciences, University of Tokyo , Tokyo, Japan

3. AMED-CREST, Japan Agency for Medical Research and Development , Tokyo, Japan

Abstract

ABSTRACT Transmembrane protein 100 (TMEM100) comprises 134 amino acid residues and is highly conserved among vertebrates. Tmem100 has been recently reported as a key factor in angiogenesis, pain transmission, and tumor suppression. Although the importance of TMEM100 function is well supported, few studies have elucidated its expression mechanism. In the current study, we found that activating transcription factor 6α, a transcription factor activated by endoplasmic reticulum (ER) stress, enhanced Tmem100 promoter activity. Two ER stress response element-like motifs were identified in the mouse Tmem100 promoter region. However, additional experiments using another type of ER stress inducer demonstrated that calcium signaling was more important than ER stress in the regulation of TMEM100 expression. Intracellular calcium signaling controls biological processes such as cell proliferation and embryonic development. This study suggested that TMEM100 performs various functions in response to alterations in calcium signaling in addition to those in response to ER stress.

Funder

Japan Society for the Promotion of Science

Japanese Agency for Medical Research and Development

Cross-ministerial Strategic Innovation Promotion Program

the Cross-ministerial Strategic Innovation Promotion Program

the Japanese Agency for Medical Research and Development

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3