Cl- channels regulate lipid droplet formation via Rab8a expression during adipocyte differentiation

Author:

Ouchi Kanae12,Yoshie Susumu1,Miyake Masao1,Hazama Akihiro1

Affiliation:

1. Department of Cellular and Integrative Physiology, School of Medicine, Fukushima Medical University, Fukushima, Japan

2. Department of Judo Therapy, Koriyama Institute of Health Science, Koriyama, Japan

Abstract

ABSTRACT Several studies have shown that Cl− channels regulate the differentiation of some cell types. Thus, we investigated the role of Cl− channels on adipocyte differentiation using adipose tissue-derived stem cells (ASCs) and Cl− channel blocker. We induced rabbit ASCs into adipocytes using Cl− channel blocker. The expression levels of adipocyte markers were no significant difference between the cells treated with a Cl− channel blocker NPPB and untreated cells. However, when the cells were treated with NPPB, lipid droplets (LDs) sizes decreased compared with the untreated control. Interestingly, the expression levels of Rab8a, which is known as a regulator of LD fusion, were also decreased in the cells treated with NPPB. Other Cl− channel blockers, DIDS and IAA-94, also inhibited large LDs formation and Rab8a expression. These results demonstrate that Cl− channels do not regulate the adipocyte differentiation, but do regulate the LDs formation via Rab8a expression. Abbreviations: ASCs: adipose tissue-derived stem cells; LDs: lipid droplets; RUNX2: runt-related transcription factor 2; CFTR: cystic fibrosis transmembrane conductance regulator; TG: triacylglycerol; FA: fatty acid; GLUT4: glucose transporter type 4; ER: endoplasmic reticulum; ADRP: adipose differentiation-related protein; TIP47: tail-interacting protein of 47 kD; HSL: hormone sensitive lipase; PBS: phosphate-buffered saline; DMEM: Dulbecco’s modified Eagle Medium; FBS: fetal bovine serum; SMA: smooth muscle actin; FAS: fatty acid synthase; ZONAB: ZO-1 associated nucleic acid binding protein; PPAR-γ: peroxisome proliferator-activated receptor-γ; C/EBPα: CCAAT/enhancer binding protein α; CE: cholesteryl ester; V-ATPase: vacuolar H+ ATPase.

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3