Skeletal muscle cell contraction reduces a novel myokine, chemokine (C-X-C motif) ligand 10 (CXCL10): potential roles in exercise-regulated angiogenesis

Author:

Ishiuchi Yuri1,Sato Hitoshi1,Tsujimura Kazuki2,Kawaguchi Hideo12,Matsuwaki Takashi3,Yamanouchi Keitaro3,Nishihara Masugi3,Nedachi Taku12

Affiliation:

1. Graduate School of Life Sciences, Toyo University, Tokyo, Japan

2. Faculty of Life Sciences, Toyo University, Tokyo, Japan

3. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan

Abstract

Abstract Accumulating evidence indicates that skeletal muscle secrets proteins referred to as myokines and that exercise contributes to their regulation. In this study, we propose that chemokine (C-X-C motif) ligand 10 (CXCL10) functions as a novel myokine. Initially, we stimulated differentiated C2C12 myotubes with or without electrical pulse stimulation (EPS) to identify novel myokines. Cytokine array analysis revealed that CXCL10 secretion was significantly reduced by EPS, which was further confirmed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction analysis. Treadmill experiments in mice identified significant reduction of Cxcl10 gene expression in the soleus muscle. Additionally, contraction-dependent p38 MAPK activation appeared to be involved in this reduction. Furthermore, C2C12 conditioned medium obtained after applying EPS could induce survival of MSS31, a vascular endothelial cell model, which was partially attenuated by the addition of recombinant CXCL10. Overall, our findings suggest CXCL10 as a novel exercise-reducible myokine, to control endothelial cell viability.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Reference40 articles.

1. Muscle as a paracrine and endocrine organ;Giudice;Curr Opin Pharmacol,2017

2. Identification of secreted proteins during skeletal muscle development;Chan;J Proteome Res,2007

3. Muscle as a secretory organ;Pedersen;Compr Physiol,2013

4. Muscles, exercise and obesity: skeletal muscle as a secretory organ;Pedersen;Nat Rev Endocrinol,2012

5. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle;Louis;J Appl Physiol,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3