Single amino acid mutation altered substrate specificity for l-glucose and inositol in scyllo-inositol dehydrogenase isolated from Paracoccus laeviglucosivorans

Author:

Suzuki Mayu1,Koubara Kairi1,Takenoya Mihoko1,Fukano Kazuhiro1,Ito Shinsaku1,Sasaki Yasuyuki1,Nakamura Akira23,Yajima Shunsuke1

Affiliation:

1. Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan

2. Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan

3. Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Ibaraki, Japan

Abstract

ABSTRACT scyllo-inositol dehydrogenase, isolated from Paracoccus laeviglucosivorans (Pl-sIDH), exhibits a broad substrate specificity: it oxidizes scyllo- and myo-inositols as well as l-glucose, converting l-glucose to l-glucono-1,5-lactone. Based on the crystal structures previously reported, Arg178 residue, located at the entry port of the catalytic site, seemed to be important for accepting substrates. Here, we report the role of Arg178 by using an alanine-substituted mutant for kinetic analysis as well as to determine the crystal structures. The wild-type Pl-sIDH exhibits the activity for scyllo-inositol most preferably followed by myo-inositol and l-glucose. On the contrary, the R178A mutant abolished the activities for both inositols, but remained active for l-glucose to the same extent as its wild-type. Based on the crystal structures of the mutant, the side chain of Asp191 flipped out of the substrate binding site. Therefore, Arg178 is important in positioning Asp191 correctly to exert its catalytic activities. Abbreviations: IDH: inositol dehydrogenase; LB: Luria-Bertani; kcat: catalyst rate constant; Km: Michaelis constant; NAD: nicotinamide dinucleotide; NADH: nicotinamide dinucleotide reduced form; PDB; Protein Data Bank; PDB entry: 6KTJ, 6KTK, 6KTL

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3