Transcriptome alterations in HepG2 cells induced by shRNA knockdown and overexpression of TMEM2 gene

Author:

Jia Xiuhua1,Mo Zhishuo234,Zhao Qiyi234,Bao Tiancheng1,Xu Wexiong234,Gao Zhiliang234,Peng Liang234,Zhu Xiang234

Affiliation:

1. Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China

2. Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China

3. Guangdong Provincial Key Laboratory of Liver Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China

4. Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China

Abstract

Abstract Transmembrane 2 (TMEM2) gene inhibits chronic hepatitis-B virus (HBV) infection, while the underlying molecular mechanisms remain unknown. Transcriptome alterations in HepG2 cells following TMEM2 overexpression or silencing by shRNA were analyzed by next-generation sequencing. Both overexpression and knockdown of the TMEM2 gene caused wide-spread changes in gene expression in HepG2 cells. Differentially expressed genes caused by altered TMEM2 gene expression were associated with multiple biological processes linked with viral infection and various signaling pathways. KEGG analysis revealed that many of the differentially expressed genes were enriched in the PI3K/AKT signaling pathway. Moreover, we show that genes related to the PI3K/AKT signaling pathway, such as SYK, FLT4, AKT3, FLT1, and IL6, are biological targets regulated by TMEM2 in HepG2 cells. This is the first transcriptome-wide study in which TMEM2-regulated genes in HepG2 cells have been screened. Our findings elucidate the molecular events associated with TMEM2-mediated hepatocyte pathogenesis in chronic HBV infection.

Funder

National Natural Science Foundation of China

Guangzhou Science and Technology

Medical Science Research Foundation of Guangdong Province

National Science and Technology Major Project

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3