Aβ induces oxidative stress in senescence-accelerated (SAMP8) mice

Author:

Takagane Kurara12,Nojima Jun2,Mitsuhashi Hiroaki2,Suo Satoshi2,Yanagihara Dai2,Takaiwa Fumio3,Urano Yasuomi4,Noguchi Noriko4,Ishiura Shoichi12

Affiliation:

1. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan

2. Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan

3. Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tokyo, Japan

4. Systems Life Sciences Laboratory, Faculty of Life and Medical Sciences, Department of Medical Life Systems, Doshisha University, Tokyo, Japan

Abstract

Abstract According to the amyloid hypothesis, amyloid β accumulates in brains with Alzheimer’s disease (AD) and triggers cell death and memory deficit. Previously, we developed a rice Aβ vaccine expressing Aβ, which reduced brain Aβ levels in the Tg2576 mouse model of familial AD. We used senescence-accelerated SAMP8 mice as a model of sporadic AD and investigated the relationship between Aβ and oxidative stress. Insoluble Aβ and 4-hydroxynonenal (4-HNE) levels tended to be reduced in SAMP8 mice-fed the rice Aβ vaccine. We attempted to clarify the relationship between oxidative stress and Aβ in vitro. Addition of Aβ peptide to the culture medium resulted in an increase in 4-HNE levels in SH-SY5Y cells. Tg2576 mice, which express large amounts of Aβ in their brain, also exhibited increased 4-HNE levels; this increase was inhibited by the Aβ vaccine. These results indicate that Aβ induces oxidative stress in cultured cells and in the mouse brain.

Funder

Neurological and Psychiatric Disorders of NCNP from the Ministry of Health, Labor and Welfare, Japan

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3