Predictive analysis of RNN, GBM and LSTM network for short-term wind power forecasting
Author:
Affiliation:
1. Department of Electrical Engineering, Delhi Technological University, Delhi 110042, India
2. Department of Electrical Engineering, Delhi Technological University, Delhi 110042, India,
Publisher
Informa UK Limited
Link
https://www.tandfonline.com/doi/pdf/10.1080/09720510.2020.1723224
Reference16 articles.
1. G. Batres-Estrada, “Deep learning for multivariate financial time series,” ser. Technical Report, Stockholm, May 2015.
2. Paolo Burlando aRenzoRosso aLuis G. CadavidbJose D. Salasb: Forecasting of short-term rainfall using ARMA models, vol. 144, issue 1-4, April 1993, pages 193-211
3. Adebile, Olukayode, Shangodoyin, Kehinde, Arnab Raghunath: Forecasting performance of logistic STAR model: an alternative version to the original LSTAR models, vol. 3, MASA. Model Assisted Statistics and Applications,2018/12/16.
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Ultra-Short-Term Wind Power Prediction Method Based on Quadratic Decomposition and Multi-Objective Optimization;EAI Endorsed Transactions on Energy Web;2024-04-15
2. Wind Forecasting based on CEL-LSTM Hybrid Model for German Farm;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29
3. Envisioning India's Energy Future: Predictive Models for Power Generation Trends;2024 International Conference on Emerging Smart Computing and Informatics (ESCI);2024-03-05
4. Green energy forecasting using multiheaded convolutional LSTM model for sustainable life;Sustainable Energy Technologies and Assessments;2024-03
5. Wind Power Forecast Based on Multi-Source Data and RNN: A Case Study of Jiangsu;2023 10th International Forum on Electrical Engineering and Automation (IFEEA);2023-11-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3