Study on microstructure evolution and hot deformation behaviour of Cu–6.5Fe–0.3Mg alloy

Author:

Wang Lanhao1,Luo Xin1,Yuan Dawei12,Chen Jinshui1,Chen Huiming1,Huang Hao12,Xiao Xiangpeng12,Yang Bin1

Affiliation:

1. Faculty of Materials Metallurgy and Chemistry, JiangXi University of Science and Technology, Ganzhou, People's Republic of China

2. Advanced Copper Industry College, JiangXi University of Science and Technology, Ganzhou, People's Republic of China

Abstract

The hot deformation behaviour and microstructure evolution of the Cu–6.5Fe–0.3Mg alloy were explored. The optimum hot working temperature of the alloy was 950°C and the strain rate was 10 s−1. The alloy underwent dynamic recovery (DRV) and dynamic recrystallisation (DRX) behaviour during hot compression. The density of the Fe phase particles increased significantly, and they were all aligned along the vertical compression direction. The α-Fe phase transformed to γ-Fe phase at 950°C. A large amount of α-Fe and γ-Fe phases effectively inhibited the DRX behaviour of the Cu–6.5Fe–0.3Mg alloy and significantly improved its thermal stability. The research on the hot deformation behaviour of the Cu–6.5Fe–X alloys had a theoretical guiding role in determining its hot working process. Highlights The optimal hot deformation process of Cu–6.5Fe–0.3Mg alloy was clarified. Constitutive equations and thermal working diagrams of the alloys are constructed Thermal deformation significantly increases Fe particle density, optimising its distribution. the transformation of α-Fe phase to γ-Fe phase during the hot compression at 950°C. The increasing in Fe phase significantly inhibits the dynamic recrystallization of the alloy.

Funder

National Key Research and Development Program of China

Study on the regulation mechanism of alloy elements on the microstructure and properties of high-performance Cu-Fe alloys

Key Science and Technology Project of Jiangxi Province

Study on the Controllable Preparation of Cu-Fe-Mg alloy with High-strength and High-conductivity Magnetic Shielding

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3