Two Cases of Uveal Amelanotic Melanoma in Transgenic Tyr-HRAS+ Ink4a/Arf Heterozygous Mice

Author:

Latendresse John R.1,Muskhelishvili Levan1,Warbritton Alan1,Tolleson William H.2

Affiliation:

1. Toxicologic Pathology Associates

2. Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079 USA

Abstract

Uveal melanoma (UM) is uncommon among wild type mice. Efforts to develop transgenic mice to study this disease have resulted in pigmented tumors derived from the retinal pigment epithelium (RPE) or mixed tumors of RPE and UM complicating the study of UM specifically. Reported here are two early stage intraocular amelanotic melanomas discovered in 2 Tyr- HRAS+ Ink4a/Arf heterozygous (1 normal CKDN2A allele) transgenic FVB/n mice. These tumors were morphologically and immunohistochemically similar to spontaneous UM recently reported in the Ink4a/Arf homozygous ( CKDN2A knockout) parent strain. The tumors originated in the posterior uveal tract. The neoplasms were comprised of bundles of spindle-shaped melanocytes admixed with some epithelioid cells. Tumors were immunohistochemically positive for neuron-specific enolase, S-100, pan- ras, but negative for cytokeratin and Melan-A. The development of early lenticular opacity and bilateral cataracts is a consistent phenotype of transgenic mice in which the retinoblastoma signaling pathway has been disrupted. Lenticular opacity and cataracts are rarely observed clinically in Tyr- HRAS+ Ink4a/Arf heterozygotes, rendering this strain suitable for ophthalmoscopy. Consequently, Tyr- HRAS+ Ink4a/Arf heterozygotes provide practical advantages, compared to the cataract-prone CKDN2A knockout strains, for real-time ophthalomoscopic detection and monitoring of UM while developing chemotherapeutic regimens and other research to understand the biology of UM.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3