Critical Pathways in Heart Function: Bis(2-chloroethoxy)methane-Induced Heart Gene Transcript Change in F344 Rats

Author:

Dunnick J.1,Blackshear P.2,Kissling G.1,Cunningham M.1,Parker J.3,Nyska A.1

Affiliation:

1. National Institutes of Environmental Health Sciences, Research Triangle Park, NC 27709, USA

2. Integrated Laboratory Systems, Inc., Research Triangle Park, NC 27709, USA

3. Constella Group, Research Triangle Park, NC 27709, USA

Abstract

Gene transcript changes after exposure to the heart toxin, bis(2-chloroethoxy)methane (CEM), were analyzed to elucidate mechanisms in cardiotoxicity and recovery. CEM was administered to 5-week-old male F344/N rats at 0, 200, 400, or 600 mg/kg by dermal exposure, 5 days per week, for a total of 12 doses by study day 16. Heart toxicity occurred after 2 days of dosing in all 3 regions of the heart (atrium, ventricle, interventricular septum) and was characterized by myofiber vacuolation, necrosis, mononuclear-cell infiltration, and atrial thrombosis. Ultrastructural analysis revealed that the primary site of damage was the mitochondrion. By day 5, even though dosing was continued, the toxic lesions in the heart began to resolve, and by study day 16, the heart appeared histologically normal. RNA was extracted from whole hearts after 2 or 5 days of CEM dosing. After a screen for transcript change by microarray analysis, dose-response trends for selected transcripts were analyzed by qRT-PCR. The selected transcripts code for proteins involved in energy production, control of calcium levels, and maintenance of heart function. The down-regulation of ATP subunit transcripts (Atp5j, ATP5k), which reside in the mitochondrial membranes, indicated a decrease in energy supply at day 2 and day 5. This was accompanied by down-regulation of transcripts involved in high-energy consumption processes such as membrane transport and ion channel transcripts (e.g., abc1a, kcnj12). The up-regulation of transcripts encoding for temperature regulation and calcium binding proteins (ucp1 and calb3) only at the 2 low exposure levels, suggest that these adaptive processes cannot occur in association with severe cardiotoxicity as seen in hearts at the high exposure level. Transcript expression changes occurred within 2 days of CEM exposure, and were dose- and time-dependent. The heart transcript changes suggest that CEM cardiotoxicity activates protective processes associated energy conservation and maintenance of heart function.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3