K-ras Mutations in Lung Tumors and Tumors from Other Organs are Consistent with a Common Mechanism of Ethylene Oxide Tumorigenesis in the B6C3F1 Mouse

Author:

Hong Hue-Hua L.1,Houle Christopher D.2,Ton Thai-Vu T.1,Sills Robert C.1

Affiliation:

1. Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA

2. Experimental Pathology Laboratories, Inc., Research Triangle Park, NC 27709, USA

Abstract

Ethylene oxide is a multisite carcinogen in rodents and classified as a human carcinogen by the National Toxicology Program. In 2-year mouse studies, ethylene oxide (EO) induced lung, Harderian gland (HG), and uterine neoplasms. We evaluated representative EO-induced and equivalent spontaneous neoplasms for K- ras mutations in codons 12, 13, and 61. K- ras mutations were identified in 100% (23/23) of the EO-induced lung neoplasms and 25% (27/108) of the spontaneous lung neoplasms. Codon 12 G to T transversions were common in EO-induced lung neoplasms (21/23) but infrequent in spontaneous lung neoplasms (1/108). K -ras mutations were found in 86% (18/21) of the EO-induced HG neoplasms and 7% (2/27) of the spontaneous HG neoplasms. Codon 13 G to C and codon 12 G to T transversions were predominant in the EO-induced HG neoplasms but absent in spontaneous HG neoplasms (0/27). K- ras mutations occurred in 83% (5/6) of the EO-induced uterine carcinomas and all were codon 13 C to T transitions. These data show a strong predilection for development of K- ras mutations in EO-induced lung, Harderian gland, and uterine neoplasms. This suggests that EO specifically targets the K- ras gene in multiple tissue types and that this event is a critical component of EO-induced tumorigenesis.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3