Polychlorinated Biphenyl Exposure Causes Gonadal Atrophy and Oxidative Stress in Corbicula fluminea Clams

Author:

Lehmann Daniel W.1,Levine Jay F.2,Law J. Mchugh2

Affiliation:

1. Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA

2. Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA

Abstract

Polychlorinated biphenyls (PCBs) are widespread environmental contaminants that have been linked to oxidative and other toxic effects in both humans and wildlife. Due to recent environmental health concerns at a PCB contaminated Superfund site near Raleigh, NC, we used a common clam species ( Corbicula fluminea) as surrogates to isolate the effects of PCBs on threatened bivalves native to the region. Under controlled laboratory conditions, clams were exposed to 0, 1, 10, or 100 ppb Aroclor 1260 in the ambient water for 21 days. Measured biomarkers spanned a range of effective levels of biological organization including low molecular weight antioxidants, lipid-soluble antioxidants, and whole tissue radical absorption capacity. These data were augmented by use of histological evaluation of whole samples. Aroclor 1260 significantly increased reduced glutathione (GSH) and total protein concentrations at all treatments levels. Significant decreases were measured in all treatments in γ-tocopherol and total oxidant scavenging capacity (TOSC) and α-tocopherol values in the 100 ppb exposure. Histologically, Aroclor 1260 caused significant gonadal atrophy, effacement of gonad architecture with accumulations of Brown cells, and inflammation and necrosis in digestive glands and foot processes. Our results indicate that oxidative mechanisms play a significant role in the decreased health of these clams due to exposure to Aroclor 1260. The changes in the gonads of exposed clams suggest that a serious threat to bivalve reproduction exists due to PCB exposure.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3