The Effect of Short Intermittent Light Exposures on the Melatonin Circadian Rhythm and NMU-Induced Breast Cancer in Female F344/N Rats

Author:

Travlos Gregory S.1,Wilson Ralph E.2,Murrell James A.3,Chignell Colin F.4,Boorman Gary A.2

Affiliation:

1. Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709,

2. Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709

3. Analytical Sciences, Inc., Durham, North Carolina 27713

4. Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709

Abstract

We investigated the effects of altered endogenous nighttime melatonin concentrations on mammary tumor production in an N-nitroso-N-methylurea (NMU)-induced breast cancer model in female Fischer 344 (F344)/N rats. Experiments were designed 1) to evaluate whether short-duration intermittent exposures to light at night would affect the nocturnal rise of melatonin, resulting in a decrease in nighttime serum melatonin concentrations, 2) to evaluate whether any suppression of nighttime serum melatonin concentrations could be maintained for a period of weeks, and 3) to determine the effects of suppressed serum melatonin concentrations on the incidence and progression of NMU-induced breast cancer. In vivo studies were used to assess serum melatonin concentrations after 1 day and 2 and 10 weeks of nightly administration of short-duration intermittent light exposure at night and incidence of NMU-induced tumors. Five 1-minute exposures to incandescent light every 2 hours after the start of the dark phase of the light: dark cycle decreased the magnitude of the nocturnal rise of serum melatonin concentrations in rats by approximately 65%. After 2 weeks of nightly intermittent light exposures, an average decrease of the peak nighttime serum melatonin concentrations of approximately 35% occurred. The amelioration continued and, at 10 weeks, peak nighttime serum melatonin concentrations were still decreased, by approximately 25%. Because peak endogenous nighttime serum melatonin values could be moderately suppressed for at least 10 weeks, a 26-week NMU mammary tumor study was conducted. Serum melatonin concentrations and incidence, multiplicity, and weight of NMU-induced mammary tumors were assessed. A group of pinealectomized (Px) animals was also included in the tumor study. No effect on the development of mammary tumors in an NMU-induced tumor model in rats occurred when endogenous nighttime serum melatonin concentrations were moderately suppressed by short-duration intermittent light exposures at night. At necropsy, there were no alterations in mammary tumor incidence (28/40 NMU controls, 28/40 NMU + light, 31/40 NMU + Px), multiplicity (2.18 tumors/tumor-bearing NMU control, 1.89 NMU + light, 2.39 NMU + Px), or average tumor weight (1.20 g NMU control, 1.19 g NMU + light, 0.74 g NMU + Px). Tumor burden had no effect on the serum melatonin cycle. At 26 weeks, however, animals exposed to intermittent light at night exhibited approximately 3-fold higher serum melatonin concentrations as compared with controls. Additionally, rats that had been pinealectomized at 4 weeks of age had serum melatonin concentrations that were markedly higher than the expected baseline concentrations for pinealectomized rats (<15 pg/ml), suggesting the reestablishment of a melatonin cycle. This finding was unexpected and suggests that melatonin can be produced by an organ or tissue other than the pineal gland.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Reference61 articles.

1. Nonlinear Regression Analysis and Its Applications

2. Blask DE (1993). Melatonin in oncology. In: Melatonin. Biosynthesis, Physiological Effects, and Clinical Applications, Yu HS, Reiter RJ (eds). CRC Press, Boca Raton, Florida, pp 448—475.

3. Pineal melatonin inhibition of tumor promotion in theN-nitroso-N-methylurea model of mammary carcinogenesis: potential involvement of antiestrogenic mechanisms in vivo

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3