Welding Fume Exposure and Associated Inflammatory and Hyperplastic Changes in the Lungs of Tumor Susceptible A/J Mice

Author:

Solano-Lopez Claudia1,Zeidler-Erdely Patti C.1,Hubbs Ann F.1,Reynolds Steven H.1,Roberts Jenny R.1,Taylor Michael D.1,Young Shih-Houng1,Castranova Vincent1,Antonini James M.1

Affiliation:

1. Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA

Abstract

It has been suggested that welding fume (WF) exposure increases lung cancer risk in welders. Epidemiology studies have failed to conclude that WF alone causes lung cancer and animal studies are lacking. We examined the course of inflammation, damage, and repair in the lungs of A/J mice, a lung tumor susceptible strain, caused by stainless steel WF. Mice were exposed by pharyngeal aspiration to 40 mg/kg of WF, silica, or saline. Bronchoalveolar lavage (BAL) was performed 24 hours, 1 and 16 weeks to assess lung injury and inflammation and histopathology was done 1, 8, 16, 24, and 48 weeks postexposure. Both exposures increased inflammatory cells, lactate dehydrogenase and albumin at 24 hr and 1 week. At 16 weeks, these parameters remained elevated in silica-exposed but not WF-exposed mice. Histopathologic evaluation at 1 week indicated that WF induced bronchiolar epithelial hyperplasia with associated cellular atypia, alveolar bronchiolo-alveolar hyperplasia (BAH) in peribronchiolar alveoli, and peribronchiolar lymphogranulomatous inflammation. Persistent changes included foci of histiocytic inflammation, fibrosis, atypical bronchiolar epithelial cells, and bronchiolar BAH. The principle changes in silica-exposed mice were histiocytic and suppurative inflammation, fibrosis, and alveolar BAH. Our findings that WF causes persistent bronchiolar and peribronchiolar epithelial changes, suggest a need for studies of bronchiolar changes after WF exposure.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3