Frequent p53 and H-ras Mutations in Benzene- and Ethylene Oxide-Induced Mammary Gland Carcinomas from B6C3F1 Mice

Author:

Houle Christopher D.123,Ton Thai-Vu T.3,Clayton Natasha3,Huff James4,Hong Hue-Hua L.3,Sills Robert C.3

Affiliation:

1. Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina 27709, USA

2. College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA

3. Laboratory of Experimental Pathology

4. National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA

Abstract

Benzene and ethylene oxide are multisite carcinogens in rodents and classified as human carcinogens by the National Toxicology Program. In 2-year mouse studies, both chemicals induced mammary carcinomas. We examined spontaneous, benzene-, and ethylene oxide-induced mouse mammary carcinomas for p53 protein expression, using immunohistochemistry, and p53 (exons 5–8) and H -ras (codon 61) mutations using cycle sequencing techniques. p53 protein expression was detected in 42% (8/19) of spontaneous, 43% (6/14) of benzene-, and 67% (8/12) of ethylene oxide-induced carcinomas. However, semiquantitative evaluation of p53 protein expression revealed that benzene- and ethylene oxide-induced carcinomas exhibited expression levels five- to six-fold higher than spontaneous carcinomas. p53 mutations were found in 58% (7/12) of spontaneous, 57% (8/14) of benzene-, and 67% (8/12) of ethylene oxide-induced carcinomas. H -ras mutations were identified in 26% (5/19) of spontaneous, 50% (7/14) of benzene-, and 33% (4/12) of ethylene oxide-induced carcinomas. When H- ras mutations were present, concurrent p53 mutations were identified in 40% (2/5) of spontaneous, 71% (5/7) of benzene-, and 75% (3/4) of ethylene oxide-induced carcinomas. Our results demonstrate that p53 and H -ras mutations are relatively common in control and chemically induced mouse mammary carcinomas although both chemicals can alter the mutational spectra and more commonly induce concurrent mutations.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3