Pharmacogenetics to Predict Drug-Related Adverse Events

Author:

Hosford David A.1,Lai Eric H.2,Riley John H.2,Xu Chun-Fang2,Danoff Theodore M.3,Roses Allen D.2

Affiliation:

1. Department of Genetics Research, david.hosford@gsk.com

2. Department of Genetics Research

3. Department of Clinical Pharmacology and Discovery Medicine

Abstract

Identification of reliable markers to predict drug-related adverse events (DRAEs) is an important goal of the pharmaceutical industry and others within the healthcare community. We have used genetic polymorphisms, including the most frequent source of variation (single nucleotide polymorphisms, SNPs) in the human genome, in pharmacogenetic approaches designed to predict DRAEs. Three studies exemplify the principles of using polymorphisms to identify associations in progressively larger genomic regions: polymorphic repeats within the UDP-glucuronysltransferase I (UGT1A1) gene in patients experiencing hyperbilirubinemia after administration of tranilast, an experimental drug to prevent re-stenosis following coronary revascularization; high linkage disequilibrium within the Apolipoprotein E (ApoE) gene in patients with Alzheimer Disease (AD); and the polymorphic variant HLA-B57 in patients with hypersensitivity reaction after administration of abacavir, a nucleoside reverse transcriptase inhibitor for the treatment of HIV. Together, these studies demonstrate in a stepwise manner the feasibility of using pharmacogenetic approaches to predict DRAEs.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3