Semi-Supervised anchor graph ensemble for large-scale hyperspectral image classification
Author:
Affiliation:
1. School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, China
2. Electrical and Computer Engineering Department, University of Wisconsin-Madison, Madison, WI, USA
Funder
the National Natural Science Foundation of China
Hebei Province Natural Science Foundation
Key Research and Development Project from Hebei Province
Publisher
Informa UK Limited
Subject
General Earth and Planetary Sciences
Link
https://www.tandfonline.com/doi/pdf/10.1080/01431161.2022.2048916
Reference55 articles.
1. Graph‐based spatial–spectral feature learning for hyperspectral image classification
2. Semi-supervised classification of hyperspectral image using random forest algorithm
3. Big data challenges in airborne hyperspectral image for urban landuse classification
4. Sorting of crop residues and fossil bones from soil by NIR Hyperspectral Imaging
5. Gao, B. and J. Wang. 2021. “A Fast and Robust TSVM for Pattern Classification,” arXiv:1711.05406 [cs]. July 2019. Accessed 18 May 2021. [Online]. http://arxiv.org/abs/1711.05406
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Testing the suitability of v-Support Vector Machine for hyperspectral image classification;International Journal of Image and Data Fusion;2024-05-06
2. An Enhanced Semi-Supervised Support Vector Machine Algorithm for Spectral-Spatial Hyperspectral Image Classification;Pattern Recognition and Image Analysis;2024-03
3. Segmentation-based linear discriminant analysis with information theoretic feature selection for hyperspectral image classification;International Journal of Remote Sensing;2023-06-03
4. Multi-Scale Superpixel-Guided Structural Profiles for Hyperspectral Image Classification;Sensors;2022-11-04
5. A survey of large-scale graph-based semi-supervised classification algorithms;International Journal of Cognitive Computing in Engineering;2022-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3