RecurrentHAR: A Novel Transfer Learning-Based Deep Learning Model for Sequential, Complex, Concurrent, Interleaved, and Heterogeneous Type Human Activity Recognition
Author:
Affiliation:
1. Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/02564602.2022.2101557
Reference69 articles.
1. Deep learning for sensor-based activity recognition: A survey
2. A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions
3. Body Temperature—Indoor Condition Monitor and Activity Recognition by MEMS Accelerometer Based on IoT-Alert System for People in Quarantine Due to COVID-19
4. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes
5. Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Identification of a novel likely pathogenic TPM1 variant linked to hypertrophic cardiomyopathy in a family with sudden cardiac death;ESC Heart Failure;2024-06-14
2. The Deep Learning-based Human Action Recognition System for Competitive Sports;Journal of Imaging Science and Technology;2024-05-01
3. Deep Context Model (DCM): dual context-attention aware model for recognizing the heterogeneous human activities using smartphone sensors;Evolving Systems;2024-03-12
4. Synergizing Remora Optimization Algorithm and Transfer Learning for Visual Places Recognition in Intelligent Transportation Systems and Consumer Electronics;IEEE Transactions on Consumer Electronics;2024-02
5. Simple to Complex, Single to Concurrent Sensor-Based Human Activity Recognition: Perception and Open Challenges;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3