Separation property for Schrödinger operators inLp-spaces on non-compact manifolds
Author:
Publisher
Informa UK Limited
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis
Link
http://www.tandfonline.com/doi/pdf/10.1080/17476933.2011.625090
Reference18 articles.
1. Inequalities and separation for Schrödinger type operators in L2(Rn)
2. Essential self-adjointness of Schrödinger-type operators on manifolds
3. Essential Self-Adjointness for Semi-bounded Magnetic Schrödinger Operators on Non-compact Manifolds
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Essential Self-adjointness for Covariant Tri-Harmonic Operators on Manifolds and the Separation Problem;Hacettepe Journal of Mathematics and Statistics;2022-12-31
2. On separability of non-linear Schrodinger operators with matrix potentials;International Journal of Nonlinear Sciences and Numerical Simulation;2021-05-04
3. Essential self‐adjointness of perturbed quadharmonic operators on Riemannian manifolds with an application to the separation problem;Mathematische Nachrichten;2021-03-20
4. Separation Problem for Bi-Harmonic Differential Operators in Lp− spaces on Manifolds;Journal of the Egyptian Mathematical Society;2019-08-01
5. Inequalities and separation for covariant Schrödinger operators;Journal of Geometry and Physics;2019-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3