Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains
Author:
Affiliation:
1. NTIS - New Technology for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
2. Department of Mechanics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
Funder
Grant Agency of the Czech Republic
Publisher
Informa UK Limited
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Condensed Matter Physics,Aerospace Engineering,Computational Mechanics
Link
https://www.tandfonline.com/doi/pdf/10.1080/10618562.2023.2260763
Reference26 articles.
1. Abadi M. P. Barham J. Chen Z. Chen A. Davis J. Dean M. Devin et al. 2016. Tensorflow: A System for Large-Scale Machine Learning . ArXiv abs/1605.08695.
2. Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
3. Prediction of aerodynamic flow fields using convolutional neural networks
4. Flow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrization
5. Neural-network-based fluid–structure interaction applied to vortex-induced vibration
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Viscosity Physics-Informed Neural Networks for Generating Ultra High Resolution Flow Field Data;International Journal of Computational Fluid Dynamics;2023-04-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3