Machine Vision Approach for Classification of Rice Varieties Using Texture Features

Author:

Qadri Salman1,Aslam Tanveer2,Nawaz Syed Ali2,Saher Najia2,Razzaq Abdul-1,Ur Rehman Muzammil2,Ahmad Nazir2,Shahzad Faisal2,Furqan Qadri Syed3

Affiliation:

1. Department of Computer Science, Muhammad Nawaz Shareef University of Agriculture Multan (Mns-uam), Multan Punjab, Pakistan

2. Department of Information Technology, Islamia University of Bahawalpur, Bahawalpur Punjab, Pakistan

3. Computer Vision Institute, College of Computer Science & Software Engineering, Shenzhen University China

Funder

commercial, or not-for-profit sectors.”

Publisher

Informa UK Limited

Subject

Food Science

Reference52 articles.

1. Machine vision approach for classification of citrus leaves using fused features

2. Ahmad, I. Pakistan Economic Survey 2019-20. Economic Adviser’s Wing, Finance Division Government of Pakistan, Islamabad, Economic Survey 2019-20, June 2020.

3. Evaluation of Growth Performance of Some Rice Varieties in Relation to Their Economic Yield

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Rice Variety Identification through Fine-Tuning VGG-Based Deep Learning Models;2024 7th International Conference on Informatics and Computational Sciences (ICICoS);2024-07-17

2. Rice Leaf Disease Detection Using ResNet50;2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2024-07-04

3. Identification, Classification, and Grading of Crops Grain Using Computer Intelligence Techniques;Advances in Business Information Systems and Analytics;2024-06-28

4. RiceSeedNet: Rice seed variety identification using deep neural network;Journal of Agriculture and Food Research;2024-06

5. DeepRiceTransfer: Exploiting CNN Transfer Learning for Effective Rice Variety Classification;2024 International Conference on Social and Sustainable Innovations in Technology and Engineering (SASI-ITE);2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3