Final Report on the Safety Assessment of Polyethylene1

Author:

Abstract

Polyethylene is an ethylene polymer used for a variety of purposes in cosmetics as an abrasive, adhesive, binder or bulking agent, an emulsion stabilizer, a film former, an oral care agent, and as a nonaqueous viscosity-increasing agent. Polyethylene is also used in food packaging materials and medical products, including prosthetics. The molecular weight of Polyethylene as used in cosmetics varies over a wide range. The lowest reported molecular weight is 198 Daltons and the highest is 150,000. In any given polymer preparation, there can be a broad range of molecular weights. Cellular and tissue responses to Polyethylene, determined as part of implant biocompatibility testing, include fibrous connective tissue build-up around the implant material that varies as a function of the physical form of the implant material. Specific assays for osteoblast proliferation and collagen synthesis demonstrated a reduction as a function of exposure to Polyethylene particles that is inversely related to particle size. The effect of Polyurethane particles on monocyte-derived macrophages, however, had a stimulatory effect, prolonging the survival of these cells in culture. The LD50 for Polyethylene, with an average molecular weight of 450, in rats was > 2000 mg/kg. For Polyethylene with an average molecular weight of 655, the LD50 was > 5.0 g/kg. Toxicity testing in rats shows no adverse effects at Polyethylene (molecular weight not given) doses of 7.95 g/kg or at 1.25%, 2.50%, or 5.00% in feed for 90 days. Dermal irritation studies on rabbits in which 0.5 g of Polyethylene (average molecular weight of 450) was administered in 0.5ml of water caused no irritation or corrosive effects; Polyethylene with an average molecular weight of 655 was a mild irritant. Polyethylene (average molecular weight of 450) did not cause dermal sensitization in guinea pigs tested with 50% Polyethylene ( w/w ) in a rachis oil BP. Polyethylene, with a molecular weight of 450 and a molecular weight of 655, was a mild irritant when tested as a solid material in the eyes of rabbits. Rabbit eyes treated with a solution containing 13% Polyethylene beads produced minimal irritation and no corneal abrasions. No genotoxicity was found in bacterial assays. No chemical carcinogenicity has been seen in implantation studies, although particles from Polyethylene implants can induce so-called solid-state carcinogenicity, which is a physical reaction to an implanted material. Occupational case reports of ocular irritation and systemic sclerosis in workers exposed to Polyethylene have been difficult to interpret because such workers are also exposed to other irritants. Clinical testing of intrauterine devices made of Polyethylene failed to conclusively identify statistically significant adverse effects, although squamous metaplasia was observed. The Cosmetic Ingredient Review (CIR) Expert Panel did not expect significant dermal absorption and systemic exposure to large Polyethylene polymers used in cosmetics. The Panel was concerned that information on impurities, including residual catalyst and reactants from the polymerization process, was not available. The Panel considered that the monomer unit in Polyethylene polymerization is ethylene. In the United States, ethylene is 99.9% pure. The other 0.1% includes ethane, propylene, carbon dioxide, carbon monoxide, sulfur, hydrogen, acetylene, water, and oxygen. The Panel believed that the concentration of these impurities in any final polymer would be so low as to not raise toxicity issues. Safety tests of cosmetic-grade Polyethylene have consistently failed to identify any toxicity associated with residual catalyst. Although it was reported that one process used to cross-link Polyethylene with an organic peroxide, this process is not currently used. In addition, cosmetic-grade Polyethylene is not expected to contain toxic hexanes. The Panel was concerned that the only genotoxicity data available was nonmammalian, but taking this information in concert with the absence of any chemical car-cinogenicity in implant studies suggests no genotoxic mechanism for carcinogenicity. The solid-state carcinogenicity effect was not seen as relevant for Polyethylene as used in cosmetics. The available data support the conclusion that Polyethylene is safe for use in cosmetic formulations in the practices of use and concentrations described.

Publisher

SAGE Publications

Subject

Toxicology

Reference49 articles.

1. Baker Petrolite. July 2004. Memorandum regarding Polyethylene from Dr. William Cottom. Unpublished data submitted by CTFA. 1 page.

2. Bing, J.1955.The tissue reaction to implanted plastics. Acta Pathol. Microbiol.

3. “Tannenbaum” Teflon stents versus traditional polyethylene stents for treatment of malignant biliary stricture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3