Affiliation:
1. Office of Women's Health, Food and Drug Administration, Rockville, Maryland, USA
Abstract
Women experience more adverse reactions to treatment with therapeutic drugs than men. Theories proposed to explain this include overdosing, different pharmacokinetics and pharmacodynamics, women are more likely to report adverse events than men, or women take more medications than men. Food and Drug Administration (FDA) Office of Women's Health (OWH) funds research to promote including women in clinical trials and understanding the biology of sex-related differences in the safety of FDA-regulated products. Including women in clinical trials advances the understanding of drug efficacy and safety in women by providing information on drug dosing, pharmacokinetics, and pharmacodynamics. A Baysian statistical analysis of sex differences in adverse events showed that although about the same number of adverse events were reported for men and women, those reported for women were more serious. One example of a sex difference in the toxicity of pharmaceuticals is the drug-induced cardiac arrhythmia, torsades de point. OWH funded studies in animals and humans to investigate the mechanism behind this sex difference. These studies demonstrated that shortening the QT interval increases the risk of developing torsades and that androgens protect against torsades by slowing cardiac repolarization and prolonging the QT interval. Understanding the mechanisms behind other reported sex-related differences in adverse drug effects requires additional research. The preliminary studies conducted to date suggest that this sex-related difference is likely to be a multifactorial problem requiring information from several fields of study. Ideally, individuals at risk for developing an adverse event should be identified prior to therapeutic intervention. The OWH plans to fund more studies to investigate the role of hormonal variations on drug metabolism and drug-drug interactions. Animal and in vitro model systems are needed to fully understand the mechanism of how gender influences drug toxicity.
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献