Extent and Timeliness of Tissue Repair Determines the Dose-Related Hepatotoxicity of Chloroform

Author:

Anand Sathanandam S.1,Soni Madhusudan G.1,Vaidya Vishal S.1,Murthy Subramanyam N.2,Mumtaz Moiz M.2,Mehendale Harihara M.1

Affiliation:

1. Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, USA

2. Agency for Toxic Substances and Disease Registry, Department of Health and Human Services, Atlanta, Georgia, USA

Abstract

As a part of mixture toxicity studies, the objective of the present investigation was to validate the hypothesis that the rate and extent of liver tissue repair response to a given dose determines the end result of toxicity (death or recovery), regardless of the mechanisms by which injury is inflicted, using a well-known environmental pollutant, chloroform (CHCl3). In future, the data will be used to compare with the results of mixtures containing CHCl3 to aid in characterizing the safety of chemical mixtures and to construct a physiologically based pharmacokinetic (PBPK) model for dose, route, and species extrapolation. Hepatotoxicity and tissue repair were measured in male Sprague-Dawley rats (S–D) receiving a 10-fold dose range of CHCl3 (74, 185, 370, and 740 mg/kg, IP) during a time course of 0 to 96 hours. Liver injury, as assessed by plasma alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) elevation, increased with dose over the 10-fold dose range. Because CHCl3 is also known to cause kidney damage, blood urea nitrogen (BUN) and creatinine were measured to evaluate the kidney injury. With doses up to 370 mg/kg, liver injury increased in a dose-related fashion, which peaked at 24 hours and returned to normal after 48 hours, whereas at highest dose (740 mg/kg), the injury was progressive resulting in 90% mortality. Blood and liver CHCl3 levels were quantified using gas chromatography (GC) over a time course of 30 to 360 minutes. The dose-related increase in the blood and liver CHCl3 levels were consistent with dose-dependent liver injury. Tissue regeneration response, as measured by [3H]-thymidine incorporation into hepatocellular nuclear DNA peaked at 36 hours in rats treated with the lower two doses of CHCl3 (74 and 185 mg/kg). Further increase in CHCl3 dose to 370 mg/kg resulted in an earlier increase in [3H]-thymidine incorporation at 24 hours, which peaked at 36 hours. However, at the highest dose of CHCl3 (740 mg/kg), tissue repair was delayed and attenuated, allowing for unrestrained progression of liver injury. The kidney injury markers after CHCl3 administration were not different from controls. These results support the concept that in addition to the magnitude of tissue repair response, the time at which this response occurs is critical in restraining the progression of injury. Measuring tissue repair and injury as simultaneous biological responses to toxic agents might increase the usefulness of dose-response paradigms in predictive toxicology and risk assessment. Although the dosimetry of the present study was well beyond the environmental exposure levels of CHCl3, a PBPK model will be developed in future based upon these data to evaluate the effects at environmental levels.

Publisher

SAGE Publications

Subject

Toxicology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3