Reproductive and Developmental Toxicity of Arsenic in Rodents: A Review

Author:

Wang Amy1,Holladay Steven D.1,Wolf Douglas C.2,Ahmed S. Ansar1,Robertson John L.1

Affiliation:

1. Department of Biomedical Sciences and Pathobiology, Virginia Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

2. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, ORD, US EPA, Research Triangle Park, North Carolina, USA, US Environmental Protection Agency

Abstract

Arsenic is a recognized reproductive toxicant in humans and induces malformations, especially neural tube defects, in laboratory animals. Early studies showed that murine malformations occurred only when a high dose of inorganic arsenic was given by intravenous or intraperitoneal injection in early gestation. Oral gavage of inorganic arsenic at maternally toxic doses caused reduced fetal body weight and increased resorptions. Recently, arsenic reproductive and developmental toxicity has been studied in situations more similar to human exposures and using broader endpoints, such as behavioral changes and gene expression. For the general population, exposure to arsenic is mostly oral, particularly via drinking water, repeated and prolonged over time. In mice and rats, methylated or inorganic arsenic via drinking water or by repeated oral gavage induced male and female reproductive and developmental toxicities. Furthermore, at nonmaternally toxic levels, inorganic arsenic given to pregnant dams via drinking water affected fetal brain development and postnatal behaviors. However, arsenic given by repeated oral gavage to pregnant mice and rats was not morphologically teratogenic. In this review of arsenic reproductive and developmental toxicity in rats and mice, the authors summarize recent in vivo studies and discuss possible underlying mechanisms. The influences of folate, selenium, zinc, and arsenic methylation on arsenic reproductive and developmental toxicity are also discussed.

Publisher

SAGE Publications

Subject

Toxicology

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3