The Role of Interleukin-6 (IL-6) in Human Sulfur Mustard (HD) Toxicology

Author:

Arroyo Carmen M.1,Broomfield Clarence A.2,Hackley Brennie E.3

Affiliation:

1. Drug Assessment Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA

2. Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA

3. Scientific Director, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA

Abstract

The authors applied in vitro models of controlled damage to human epidermal keratinocytes (HEKs), human skin fibroblasts (HSFs), and human breast skin tissue (HBST) to examine the mechanism responsible for sulfur mustard (HD)-induced interleukin-6 (IL-6) alterations. Treatment with 100 μM HD for 24 hours resulted in a significant increased amount of IL-6 being secreted by HEKs (HD-exposed to control ratio [E/C] = 4.15 ± 0.07) and by HSFs (E/C = 7.66 ± 0.04). Furthermore, the HD-induced secretion of IL-6 in HEKs was neutralized with monoclonal human IL-6 antibodies. The secretion of IL-6 in HBST supernatant exposed to HD produced conflicting results. Although an increase of IL-6 was observed in control superfusion media from HBST, IL-6 levels were observed to decrease as the concentration of HD increased. Time course of IL-6 mRNA levels were performed using a competitive polymerase chain reaction (PCR) and human IL-6 mRNA assay detection kit in control and HD (100 μM)-treated HEKs cells. IL-6 mRNA transcripts in HD-exposed HEKs were first observed within 2 hours, dropped at 5 to 6 hours, and increased by ® 2.2-fold and 8.5-fold at 24 to 48 hours after HD exposure, respectively, as detected by the Xplore mRNA Quantification System. Surface-enhanced laser desorption ionization (SELDI) mass spectrometry was also applied to study the secretion pattern of IL-6 on lysate preparations of HBST. A peak in the area of 23,194 to 23,226 Da was detected using antibody coupled to the chip. This peak was assigned to correspond to the mass of the IL-6 glycoprotein. Recombinant human IL-6 (rhIL-6) exposed to HD lacked the second disulfide bridge and was partially unfolded, as determined by nuclear magnetic resonance-nuclear Overhauser enhancement and exchange spectroscopy (NMR-NOESY). The disappearance of the resonance peak at 3.54 ppm and the appearance of a new chemical shift at 1.85 ppm suggested that a change in structure had occurred in the presence of HD. From the data, the possibility cannot be excluded that IL-6 might be involved in the early event of structural changes of the signal transducer glycoprotein that indirectly initiates the cascade of events such as skin irritation and blister formation observed in the pathophysiology of HD injury.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3