1. Ajenaghughrure, I. B., Sousa, S. C., Kosunen, I. J., & Lamas, D. (2019). Predictive model to assess user trust: A psycho-physiological approach [Paper presentation].10th Indian Conference on Human-Computer Interaction, In. New York, NY, USA: ACM. Retrieved from https://doi.org/10.1145/3364183.3364195
2. Al-Ashwal, W., Asadi, H., Mohamed, S., Alsanwy, S., Kooijman, L., Nahavandi, D., … Nahavandi, S. (2021). Cybersickness measurement and evaluation during flying a helicopter in different weather conditions in virtual reality [Paper presentation].2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), In (p. 2152–2157). https://doi.org/10.1109/SMC52423.2021.9659215
3. Alqahtani, F., Katsigiannis, S., & Ramzan, N. (2019). Ecg-based affective computing for difficulty level prediction in intelligent tutoring systems. In 2019 uk/china emerging technologies (ucet). (p. 1–4).
4. Alves, T., Gama, S., & Melo, F. S. (2018). Flow adaptation in serious games for health [Paper presentation].2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH), In (p. 1–8). https://doi.org/10.1109/SeGAH.2018.8401382
5. Aqajari S. A. H. Naeini E. K. Mehrabadi M. A. Labbaf S. Rahmani A. M. Dutt N. (2020). GSR analysis for stress: Development and validation of an open source tool for noisy naturalistic GSR data . arXiv. Retrieved from https://arxiv.org/abs/2005.01834 S. A. H. Aqajari E. K. Naeini M. A. Mehrabadi S. Labbaf A. M. Rahmani N. Dutt GSR analysis for stress: Development and validation of an open source tool for noisy naturalistic GSR data