Understanding the geometry of dynamics: the stable manifold of the Lorenz system
Author:
Affiliation:
1. Department of Mathematics, University of Auckland, Auckland, New Zealand
Funder
Royal Society of New Zealand
Publisher
Informa UK Limited
Subject
Multidisciplinary
Link
https://www.tandfonline.com/doi/pdf/10.1080/03036758.2018.1434802
Reference26 articles.
1. Global invariant manifolds near a Shilnikov homoclinic bifurcation
2. Finding First Foliation Tangencies in the Lorenz System
3. A subdivision algorithm for the computation of unstable manifolds and global attractors
4. Mixed-Mode Oscillations with Multiple Time Scales
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Infinite-memory classical wave-particle entities, attractor-driven active particles, and the diffusionless Lorenz equations;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-01-01
2. Using the (3N)-Dimensional Generalized Lorenz Systems as a Testbed for Data Assimilation: The Ensemble Kalman Filter;Monthly Weather Review;2021-11
3. A Degenerate Takens–Bogdanov Bifurcation in a Normal form of Lorenz’s Equations;NODYCON Conference Proceedings Series;2021-07-19
4. Unsteady dynamics of a classical particle-wave entity;Physical Review E;2021-07-08
5. Global invariant manifolds delineating transition and escape dynamics in dissipative systems: an application to snap-through buckling;Nonlinear Dynamics;2021-05-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3