Invasion biology and the success of social collaboration networks, with application to Wikipedia

Author:

Mangel M.12,Satterthwaite W.H.1,Pirolli P.3,Suh B.34,Zhang Y.35

Affiliation:

1. Department of Applied Mathematics and Statistics, University of California

2. Department of Biology, University of Bergen

3. PARC (Palo Alto Research Center)

4. Adobe Research

5. Google Inc.

Abstract

We adapt methods from the stochastic theory of invasions – for which a key question is whether a propagule will grow to an established population or fail – to show how monitoring early participation in a social collaboration network allows prediction of success. Social collaboration networks have become ubiquitous and can now be found in widely diverse situations. However, there are currently no methods to predict whether a social collaboration network will succeed or not, where success is defined as growing to a specified number of active participants before falling to zero active participants. We illustrate a suitable methodology with Wikipedia. In general, wikis are web-based software that allows collaborative efforts in which all viewers of a page can edit its contents online, thus encouraging cooperative efforts on text and hypertext. The English language Wikipedia is one of the most spectacular successes, but not all wikis succeed and there have been some major failures. Using these new methods, we derive detailed predictions for the English language Wikipedia and in summary for more than 250 other language Wikipedias. We thus show how ideas from population biology can inform aspects of technology in new and insightful ways.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Large-Scale Characterization of How Readers Browse Wikipedia;ACM Transactions on the Web;2023-04-03

2. Structure properties of collaboration network with tunable clustering;Information Sciences;2020-01

3. Competition and fitness in one-mode collaboration network;Communications in Nonlinear Science and Numerical Simulation;2015-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3