The formation of structurally relevant units in artificial grammar learning

Author:

Perruchet Pierre1,Vinter Annie1,Pacteau Chantal2,Gallego Jorge3

Affiliation:

1. Université de Bourgogne, Dijon, France

2. Université Paris V, Paris, France

3. Université Paris VII, Paris, France

Abstract

A total of 78 adult participants were asked to read a sample of strings generated by a finite state grammar and, immediately after reading each string, to mark the natural segmentation positions with a slash bar. They repeated the same task after a phase of familiarization with the material, which consisted, depending on the group involved, of learning items by rote, performing a short term matching task, or searching for the rules of the grammar. Participants formed the same number of cognitive units before and after the training phase, thus indicating that they did not tend to form increasingly large units. However, the number of different units reliably decreased, whatever the task that participants had performed during familiarization. This result indicates that segmentation was increasingly consistent with the structure of the grammar. A theoretical account of this phenomenon, based on ubiquitous principles of associative memory and learning, is proposed. This account is supported by the ability of a computer model implementing those principles, PARSER, to reproduce the observed pattern of results. The implications of this study for developmental theories aimed at accounting for how children become able to parse sensory input into physically and linguistically relevant units are discussed.

Publisher

SAGE Publications

Subject

General Psychology,Experimental and Cognitive Psychology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3