Experimental investigation and optimization of machining parameters for sustainable machining
Author:
Affiliation:
1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
2. Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, India
Publisher
Informa UK Limited
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science
Link
https://www.tandfonline.com/doi/pdf/10.1080/10426914.2018.1476760
Reference40 articles.
1. Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel
2. Key improvements in the machining of difficult-to-cut aerospace superalloys
3. Multi-objective Optimization of Machining Parameters During Dry Turning of AISI 304 Austenitic Stainless Steel Using Grey Relational Analysis
4. Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel
5. Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel
Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Use of vegetable oils as dielectric fluids for electrical discharge machining. A case study;Heliyon;2024-06
2. Evaluation of cutting parameters during dry turning of AISI 304 stainless steel and optimization through a modified WPCA approach;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-05-16
3. A7075 alloy reinforced metal matrix composites fabricated through stircasting route: a review;International Journal of Cast Metals Research;2024-05-03
4. ANFIS-TLBO-based optimization of drilling parameters to minimize burr formation in aluminum 6061;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-04-15
5. Multi-Objective Optimization for Turning Process of 304 Stainless Steel Based on Dung Beetle Optimizer-Back Propagation Neural Network and Improved Particle Swarm Optimization;Journal of Materials Engineering and Performance;2023-10-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3