Grinding parameters prediction under different cooling environments using machine learning techniques
Author:
Affiliation:
1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
2. Department of Production Engineering, PSG college of Technology, Coimbatore, India
Publisher
Informa UK Limited
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science
Link
https://www.tandfonline.com/doi/pdf/10.1080/10426914.2022.2116043
Reference33 articles.
1. A comprehensive study on surface integrity of nickel-based superalloy Inconel 718 under robotic belt grinding
2. Machinability of Inconel 718: A critical review on the impact of cutting temperatures
3. Multi performance investigation of Inconel-625 by abrasive aqua jet cutting
4. Influence of nanoparticles’ size on Inconel 718 machining induced residual stresses
5. Cellular automata modeling for rotary friction welding of Inconel 718
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comprehensive investigation on eco-benign grindability improvement of Inconel 625 using nano-MQL;Precision Engineering;2024-10
2. Prediction of profile error in aspheric grinding of spherical fused silica by ensemble learning regression methods;Precision Engineering;2024-06
3. Investigation on Grindability Improvement of Inconel 625 using Multi-walled Carbon Nanotubes Nanofluids-Assisted Minimum Quantity Lubrication Surface Grinding;Journal of Materials Engineering and Performance;2024-05-29
4. Tool wear and surface roughness characteristics in sustainable machining of additively manufactured titanium alloys;Journal of Materials Research and Technology;2024-05
5. Hybrid approach for modelling and optimizing MQL grinding of Inconel 625 with machine learning and MCDM techniques;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-02-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3