An efficient botnet detection approach based on feature learning and classification

Author:

Padmavathi B.12,Muthukumar B.3

Affiliation:

1. Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, India

2. Department of Computer Science and Engineering, Easwari Engineering College, Chennai, India

3. DMI College of Engineering, Chennai, India

Publisher

Informa UK Limited

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Human-Computer Interaction,Information Systems,Signal Processing,Control and Systems Engineering

Reference33 articles.

1. Sentiment Analysis of Twitter Data: A Survey of Techniques

2. Secure Data Encryption Based on Quantum Walks for 5G Internet of Things Scenario

3. Abou Daya, A., Salahuddin, M. A., Limam, N. & Boutaba, R. (2019). A graphbased machine learning approach for bot detection. In Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service Management (IM).

4. Filtration model for the detection of malicious traffic in large-scale networks

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection and Classification of Network Traffic in Bot Network Using Deep Learning;Journal of Information & Knowledge Management;2024-08-09

2. Life saving android system at trivial times;AIP Conference Proceedings;2024

3. A novel hybrid feature selection and ensemble-based machine learning approach for botnet detection;Scientific Reports;2023-12-01

4. Detection of Botnet Traffic using Deep Learning Approach;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

5. Detection of Peer-to-Peer Botnet Using Machine Learning Techniques and Ensemble Learning Algorithm;International Journal of Information Security and Privacy;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3