Evaluation of data-driven thermal models for multi-hour predictions using residential smart thermostat data
Author:
Affiliation:
1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
2. Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Informa UK Limited
Subject
Computer Science Applications,Modelling and Simulation,Building and Construction,Architecture
Link
https://www.tandfonline.com/doi/pdf/10.1080/19401493.2020.1864474
Reference60 articles.
1. Development and performance comparison of low-order black-box models for a residential HVAC system
2. Development of an accurate gray-box model of ubiquitous residential HVAC system for precise performance prediction during summer and winter seasons
3. Black-box modeling of residential HVAC system and comparison of gray-box and black-box modeling methods
4. Gray-box modeling and validation of residential HVAC system for control system design
5. Supervisory model predictive controller (MPC) for residential HVAC systems: Implementation and experimentation on archetype sustainable house in Toronto
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Thermal modeling for control applications of 60,000 homes in North America using smart thermostat data;Energy and Buildings;2024-01
2. Unmasking the Thermal Behavior of Single-Zone Multi-Room Houses: An Empirical Study;Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation;2023-11-15
3. An Empirical noise model of centrifugal fans with different volute tongues based on Langevin regression;Journal of Building Engineering;2023-11
4. Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector;Energy;2023-09
5. Data-driven approach to prioritize residential buildings’ retrofits in cold climates using smart thermostat data;Architectural Science Review;2023-03-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3