Informing building retrofits at low computational costs: a multi-objective optimisation using machine learning surrogates of building performance simulation models
Author:
Affiliation:
1. Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada
2. Department of Civil Engineering, IIT Bombay, Powai, Mumbai, India
Funder
Canada Research Chairs
Department of Science and Technology, Ministry of Science and Technology, India
India-Canada Centre for Innovative Multidisciplinary Partnerships to Accelerate Community Transformation and Sustainability
Publisher
Informa UK Limited
Link
https://www.tandfonline.com/doi/pdf/10.1080/19401493.2024.2384487
Reference66 articles.
1. Optimizing building energy performance predictions: A comparative study of artificial intelligence models
2. Urban building energy performance prediction and retrofit analysis using data-driven machine learning approach
3. Machine learning as a surrogate to building performance simulation: Predicting energy consumption under different operational settings
4. A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks
5. Building energy optimization using surrogate model and active sampling
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3