Using machine learning for cutting tool condition monitoring and prediction during machining of tungsten
Author:
Affiliation:
1. Department of Mechanical Engineering, University of Bath, Bath, UK
2. United Kingdom Atomic Energy Authority, Culham Science Center, Abingdon, UK
3. Center for Advanced Design and Manufacturing, University of Bath, Bath, UK
Funder
UK Atomic Energy Authority
EPSRC
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Aerospace Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2023.2257648
Reference40 articles.
1. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems;Abadi M.;ArXiv: 1603 04467,2016
2. Sensor signal selection for tool wear curve estimation and subsequent tool breakage prediction in a drilling operation
3. Kymatio: Scattering Transforms in Python;Andreux M.;Journal of Machine Learning Research,2020
4. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life
5. Health assessment and life prediction of cutting tools based on support vector regression
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving milling tool wear prediction through a hybrid NCA-SMA-GRU deep learning model;Expert Systems with Applications;2024-12
2. Real-time tool condition monitoring with the internet of things and machine learning algorithms;International Journal of Computer Integrated Manufacturing;2024-09-06
3. Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III;Machining Science and Technology;2024-07-26
4. Machine learning for monitoring hobbing tool health in CNC hobbing machine;Frontiers in Materials;2024-04-12
5. Sustainable machining: Recent technological advances;CIRP Annals;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3