Vision-based surface roughness evaluation system for end milling
Author:
Affiliation:
1. Industrial and Information Systems Engineering, Chonbuk National University, Jeonju, South Korea
2. Korea Marine Equipment Research Institute, Gunsan-si, Jeollabuk-do, South Korea
Funder
Ministry of Education
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Aerospace Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2017.1407451
Reference25 articles.
1. Feasibility assessment of vision-based surface roughness parameters acquisition for different types of machined specimens
2. Optimization of feedrate in a face milling operation using a surface roughness model
3. Investigation of cutting condition monitoring by visual measurement of surface texture parameters
4. Image Data Processing via Neural Networks for Tool Wear Prediction
5. Progressive cutting tool wear detection from machined surface images using Voronoi tessellation method
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Non-contact surface roughness evaluation of milled Al and Cu specimens by 1D and 2D wavelet transformation using histogram based linear regression model;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-08-05
2. Effect of depositional strategy on surface roughness of Al-5%Mg wall fabricated via Cold Metal Transfer based Wire Arc Additive Manufacturing;Materials Today: Proceedings;2024-05
3. A visual measurement method of grinding surface roughness based on aliasing region index and neural network;Measurement Science and Technology;2024-02-06
4. Image super resolution by double dictionary learning and its application to tool wear monitoring in micro milling;Mechanical Systems and Signal Processing;2024-01
5. Measurement of EDMed surfaces roughness using convolutional neural network;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-07-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3