Application of machine learning techniques to build digital twins for long train dynamics simulations
Author:
Affiliation:
1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
2. Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
Publisher
Informa UK Limited
Subject
Mechanical Engineering,Safety, Risk, Reliability and Quality,Automotive Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/00423114.2023.2174885
Reference65 articles.
1. Dimitrova E Tomov S. Digital twins: An advanced technology for railways maintenance transformation. In: 2021 13th Electrical Engineering Faculty Conference (BulEF); 8–11 September; Varna Bulgaria: IEEE; 2021.
2. Predictive Maintenance for Switch Machine Based on Digital Twins
3. Doubell GC Kruger K Basson AH et al. The potential for digital twin applications in railway infrastructure management. In: Pinto JOP Kimpara MLM Reis RR et al. editors. 15th WCEAM Proceedings; 15–18 August; Campo Grande: Springer Cham; 2022. p. 241–249.
4. Futai MM Bittencourt TN Santos RR et al. Utilization of digital twins for bridge inspection monitoring and maintenance. In: Pellegrino C Faleschini F Zanini MA et al. editors. Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures; 29 August-1 September; Padova Italy: Springer Cham; 2022. p. 166–173.
5. Pappaterra MJ. A literature review for the application of artificial intelligence in the maintenance of railway operations with an emphasis on data. In: Marrone S De Sanctis M Kocsis I et al. editors. Dependable Computing – EDCC 2022 Workshops; 12 September; Zaragoza Spain: Springer Cham; 2022. p. 59–75.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Parameter identification and platoon control for virtually coupled train set with physics-informed neural network dynamics model;Vehicle System Dynamics;2024-08-26
2. A novel approach for longitudinal train dynamics simulations with multibody codes;Vehicle System Dynamics;2024-06-10
3. Crash energy management optimization of high-speed trains by machine learning methods;International Journal of Mechanical Sciences;2024-05
4. A data-driven approach for railway in-train forces monitoring;Advanced Engineering Informatics;2024-01
5. The Integration of Artificial Intelligence in Advanced Wastewater Treatment Systems;Springer Water;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3