1. Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., Januschowski, T., Maddix, D. C., Rangapuram, S. S., Salinas, D., Schulz, J., Stella, L., Türkmen, A. C. & Wang, B. (2019). Gluonts: Probabilistic time series models in python. ArXiv abs/1906.05264.
2. Blocknative (n.d.). Gas estimation for builders, by builders. https://www.blocknative.com/gas-platform
3. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H. & Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), Proceedings of the 2014 conference on empirical methods in natural language processing, EMNLP 2014, a meeting of SIGDAT, a Special Interest Group of the ACL (pp. 1724–1734). ACL. https://doi.org/10.3115/v1/d14-1179
4. Chuang, C. & Lee, T. (2021). A practical and economical bayesian approach to gas price prediction. In I. Awan, S. Benbernou, M. Younas, & M. Aleksy (Eds.), The international conference on deep learning, big data and blockchain (Deep-BDB 2021). Lecture Notes in Networks and Systems (Vol. 309, pp. 160–174). Springer. https://doi.org/10.1007/978-3-030-84337-3_13
5. Chuang, C. (n.d.). A practical and economical of gas price prediction. https://medium.com/getamis/a-practical-and-economical-of-gas-price-prediction-d9abe955ac63