Towards fast and memory efficient discovery of periodic frequent patterns
Author:
Affiliation:
1. Faculty of Engineering, University of Mines and Technology, Tarkwa, Ghana
2. School of Information Technology and Mathematical Sciences, University of South of Australia, Adelaide, Australia
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Computer Science Applications,Computer Science (miscellaneous)
Link
https://tandfonline.com/doi/pdf/10.1080/24751839.2019.1634868
Reference22 articles.
1. Agrawal, R., Imieliński, T. & Swami, A. (1993). Mining association rules between sets of items in large databases. SIGMOD Rec. (Vol. 22(2), pp. 207–216). ACM.
2. Fournier-Viger, P., Lin, C. W., Duong, Q. H., Dam, T. L. Ševčík, L., Uhrin, D. & Voznak, M. (2017). PFPM: Discovering periodic frequent patterns with novel periodicity measures. Proceedings of the 2nd Czech-China scientific conference. InTech.
3. Fournier-Viger, P., Lin, J. C. W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z. & Lam, H. T. (2016). The SPMF open-source data mining library version 2. Proceedings of European conference on machine learning and knowledge discovery in databases (pp. 36–40). Cham: Springer.
4. Han, J., Pei, J. & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM SIGMOD Rec. (Vol. 29(2), pp. 1–12). ACM.
5. Kiran, R. U. & Kitsuregawa, M. (2013). Discovering quasi-periodic-frequent patterns in transactional databases. In V. Bhatnagar, & S. Srinivasa (Eds.), BDA 2013. LNCS, Vol. 8302 (pp. 97–115). Springer International.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases Using Set Complements;IEEE Access;2023
2. Query Operators for Transactional Data: Detecting Similar and Periodic Transactions;The Computer Journal;2022-12-21
3. Rhythmus periodic frequent pattern mining without periodicity threshold;Journal of Ambient Intelligence and Humanized Computing;2022-01-13
4. Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases;Intelligent Information and Database Systems;2022
5. Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously;Data Mining and Knowledge Discovery;2021-04-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3