Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics

Author:

Xue Y.-J.1,Gao P.-Y.1,Duan Q.1,Lin Y.1,Dai C.-B.1

Affiliation:

1. Department of Radiology, Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Neuroradiology and Department of Neurology, Beijing Neurosurgical Institute, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China

Abstract

Background: Regions prone to atherosclerosis, such as bends and bifurcations, tend to exhibit a certain degree of non-planarity or curvature, and these geometric features are known to strongly influence local flow patterns. Recently, computational fluid dynamics (CFD) has been used as a means of enhancing understanding of the mechanisms involved in atherosclerotic plaque formation and development. Purpose: To analyze flow patterns and hemodynamic distribution in stenotic carotid bifurcation in vivo by combining CFD with magnetic resonance angiography (MRA). Material and Methods: Twenty-one patients with carotid atherosclerosis proved by digital subtraction angiography (DSA) and/or Doppler ultrasound underwent contrast-enhanced MR angiography of the carotid bifurcation by a 3.0T MR scanner. Hemodynamic variables and flow patterns of the carotid bifurcation were calculated and visualized by combining vascular imaging postprocessing with CFD. Results: In mild stenotic cases, there was much more streamlined flow in the bulbs, with reduced or disappeared areas of weakly turbulent flow. Also, the corresponding areas of low wall shear stress (WSS) were reduced or even disappeared. As the extent of stenosis increased, stronger blood jets formed at the portion of narrowing, and more prominent eddy flows and slow back flows were noted in the lee of the stenosis. Regions of elevated WSS were predicted at the portion of stenosis and in the path of the downstream jet. Areas of low WSS were predicted on the leeward side of the stenosis, corresponding with the location of slowly turbulent flows. Conclusion: CFD combined with MRA can simulate flow patterns and calculate hemodynamic variables in stenotic carotid bifurcations as well as normal ones. It provides a new method to investigate the relationship of vascular geometry and flow condition with atherosclerotic pathological changes.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3