Measurement of lower-leg volume change by quantitative computed tomography

Author:

Angelhed J.-E.1,Strid L.1,Bergelin E.1,Fagerberg B.1

Affiliation:

1. Clinical Trial Center, Department of Medicine, and Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy of Göteborg University, Göteborg, Sweden

Abstract

Background: Lower-leg edema is a common symptom in many diseases. A precise method with low variability for measurement of edema is warranted in order to obtain optimal conditions for investigation of treatment effects. Purpose: To evaluate computed tomography for precise measurement of lower-leg muscle and adipose tissue volumes using a very low level of effective radiation dose. Material and Methods: Eleven volunteers were examined three times during 1 day, either as two consecutive examinations in the morning and one single examination in the afternoon, or as one examination in the morning and two in the afternoon. Eleven scans with computed tomography were made at each examination, and lower-leg volumes were calculated from automatically measured scan areas and interscan distances. Volumes for muscle, adipose tissue, and bone were calculated separately. Minimal radiation dose was used. Results: Mean difference between the repeated examinations was −0.1 ml for total volume, −1.4 ml for muscle, and 1.6 ml for adipose tissue volume. The corresponding 95% confidence intervals were −6.5 to 6.0 ml, −3.5 to 6.5 ml, and −7.0 to 4.0 ml, respectively. The resulting effective dose was 0.5 µSv to one leg. Conclusion: Computed tomography can be used as a precise quantitative method to measure small volume changes of the lower leg as a whole, and separately for muscle and adipose tissue. The results were obtained with a negligible effective dose, lower than that delivered by modern fan-beam dual-energy X-ray absorptiometry whole-body examinations and equal to a few hours of background radiation.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3