First-line investigation of acute intracerebral hemorrhage using dynamic magnetic resonance angiography

Author:

Evans A. L.1,Coley S. C.1,Wilkinson I. D.1,Griffiths P. D.1

Affiliation:

1. Department of Radiology, Royal Hallamshire Hospital, Sheffield, UK and Unit of Academic Radiology, University of Sheffield, Sheffield, UK

Abstract

Purpose: To report the initial experience of magnetic resonance (MR) digital subtraction angiography (MR-DSA) in the dynamic assessment of the cerebral circulation in acute non-traumatic intracerebral hemorrhage (ICH). Material and Methods: Twelve patients with acute ICH were investigated within 6 days of the ictus using a dynamic contrast-enhanced 2-D MR angiogram that produces subtracted images with a temporal resolution of 1–2 frame/s. The MR-DSA examinations were assessed for evidence of an intracranial vascular abnormality and were compared with (i) the routine MR sequences, (ii) non-dynamic time-of-flight MR angiography, and (iii) catheter angiogram performed during the same admission. Results: All 12 MR-DSA examinations were considered to be technically satisfactory. MR-DSA detected an intracranial vascular abnormality in 7 patients (3 arteriovenous malformations, 2 aneurysms, 1 dural arteriovenous fistula, and 1 venous thrombosis). All abnormalities were confirmed by catheter angiography with the exception of one patient with venous sinus thrombosis found on MR imaging that did not undergo catheter angiography. All four arteriovenous shunts were detected by MR-DSA by virtue of early venous filling. Conclusion: MR-DSA can be performed satisfactorily in the setting of acute ICH and provides an alternative method to catheter angiography for identifying shunting vascular abnormalities such as arteriovenous malformations and fistulae, as well as large aneurysms and venous occlusions. MR-DSA is a contrast-medium-based technique that does not suffer from the T1 shortening effects of acute hemorrhage that can obscure abnormalities on conventional flow-based non-dynamic techniques.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3