Clinical evaluation of a dual-side readout technique computed radiography system in chest radiography of premature neonates

Author:

Carlander A.1,Hansson J.1,Söderberg J.1,Steneryd K.1,Båth M.1

Affiliation:

1. Department of Radiation Physics, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Göteborg, Sweden; Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Göteborg, Sweden

Abstract

Background: Recently, the dual-side readout technique has been introduced in computed radiography, leading to an increase in detective quantum efficiency (DQE) compared with the single-side readout technique. Purpose: To evaluate if the increase in DQE with the dual-side readout technique results in a higher clinical image quality in chest radiography of premature neonates at no increase in radiation dose. Material and Methods: Twenty-four chest radiographs of premature neonates were collected from both a single-side readout technique system and a double-side readout technique system. The images were processed in the same image-processing station in order for the comparison to be only dependent on the difference in readout technique. Five radiologists rated the fulfillment of four image quality criteria, which were based on important anatomical landmarks. The given ratings were analyzed using visual grading characteristics (VGC) analysis. Results: The VGC analysis showed that the reproduction of the carina with the main bronchi and the thoracic vertebrae behind the heart was better with the dual-side readout technique, whereas no significant difference for the reproduction of the central vessels or the peripheral vessels could be observed. Conclusions: The results indicate that the higher DQE of the dual-side readout technique leads to higher clinical image quality in chest radiography of premature neonates at no increase in radiation dose.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3