Affiliation:
1. Department of Orthopedic Surgery, University of Louvain – Mont-Godinne, Yvoir, Belgium
2. Department of Orthopedic Surgery, University of Lyon 1 – INRETS, Villeurbanne, France
3. Radiology Department, Hôpital Raymond Poincaré, Garches, France
Abstract
Background: Three-dimensional (3D) reconstructions of the spine in the upright position are classically obtained using two-dimensional, non-simultaneous radiographic imaging. However, a subject's sway between exposures induces inaccuracy in the 3D reconstructions. Purpose: To evaluate the impact of patient sway between successive radiographic exposures, and to test if 3D reconstruction accuracy can be improved by a corrective method with simultaneous Moiré–X-ray imaging. Material and Methods: Using a calibrated deformable phantom perceptible by both techniques (Moiré and X-ray), the 3D positional and rotational vertebral data from 3D reconstructions with and without the corrective procedure were compared to the corresponding data of computed tomography (CT) scans, considered as a reference. All were expressed in the global axis system, as defined by the Scoliosis Research Society. Results: When a sagittal sway of 10° occurred between successive biplanar X-rays, the accuracy of the 3D reconstruction without correction was 8.8 mm for the anteroposterior vertebral locations and 6.4° for the sagittal orientations. When the corrective method was applied, the accuracy was improved to 1.3 mm and 1.5°, respectively. Conclusion: 3D accuracy improved significantly by using the corrective method, whatever the subject's sway. This technique is reliable for clinical appraisal of the spine, if the subject's sway does not exceed 10°. For greater sway, improvement persists, but a risk of lack of accuracy exists.
Subject
Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献