Limitations of machine learning for building energy prediction: ASHRAE Great Energy Predictor III Kaggle competition error analysis
Author:
Affiliation:
1. Department of the Built Environment, College of Design and Engineering, National University of Singapore (NUS), Singapore, Singapore
2. Department of Biosystems, KU Leuven, Leuven, Belgium
3. Well Living Lab, Delos Living LLC, New York, NY, USA
Publisher
Informa UK Limited
Subject
Fluid Flow and Transfer Processes,Building and Construction,Environmental Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/23744731.2022.2067466
Reference63 articles.
1. Data science for building energy efficiency: A comprehensive text-mining driven review of scientific literature
2. Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption
3. A review of data-driven building energy consumption prediction studies
4. Deep reinforcement learning to optimise indoor temperature control and heating energy consumption in buildings
5. Data analytics for occupancy pattern learning to reduce the energy consumption of HVAC systems in office buildings
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Building consumption anomaly detection: A comparative study of two probabilistic approaches;Energy and Buildings;2024-06
2. Performance Evaluation of Micro Automatic Pressure Measurement Sensor for Enhanced Accuracy;Scalable Computing: Practice and Experience;2024-04-12
3. 8rl-RBM and BZF-PLC based mathematical control of passive solar heating/cooling of building;Numerical Heat Transfer, Part B: Fundamentals;2024-02-19
4. Recent applications of AI to environmental disciplines: A review;Science of The Total Environment;2024-01
5. Filling time-series gaps using image techniques: Multidimensional context autoencoder approach for building energy data imputation;Applied Thermal Engineering;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3