Estimation of trapping efficiency of a vortex tube silt ejector
Author:
Affiliation:
1. Civil Engineering Department, National Institute of Technology, Hamirpur, India
2. Civil Engineering Department, National Institute of Technology, Kurukshetra, India
Publisher
Informa UK Limited
Subject
Water Science and Technology
Link
https://www.tandfonline.com/doi/pdf/10.1080/15715124.2018.1476367
Reference41 articles.
1. Artificial neural networks approach for estimation of sediment removal efficiency of vortex settling basins
2. Performance assessment of vortex settling chambers
3. Sediment Removal Efficiency of Vortex Chamber Type Sediment Extractor
4. Vortex‐Tube Sediment Extractors. I: Trapping Efficiency
5. Bhattacharya, B. and Solomatine, D.P., 2003. Neural networks and M5 model trees in modelling water level-discharge relationship for an Indian river. In: European symposium on artificial neural networks, 23–25 April. Bruges, 407–412.
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recent advances and future outlook on solar-powered ejector refrigeration and associated multi-generation systems;Journal of Thermal Analysis and Calorimetry;2024-06-04
2. Groundwater Modelling of Jamwa Ramgarh using Visual MODFlow Flex;IOP Conference Series: Earth and Environmental Science;2024-04-01
3. Exploring the potential of artificial intelligence techniques in prediction of the removal efficiency of vortex tube silt ejector;International Journal of Sediment Research;2023-08
4. Investigation of steam ejector parameters under three optimization algorithm using ANN;Applied Thermal Engineering;2023-05
5. Discussion of “Prediction of Maximum Scour Depth near Spur Dikes in Uniform Bed Sediment Using Stacked Generalization Ensemble Tree-Based Frameworks” by Manish Pandey, Mehdi Jamei, Masoud Karbasi, Iman Ahmadianfar, and Xuefeng Chu;Journal of Irrigation and Drainage Engineering;2023-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3