Bio-Concrete and Beyond: Advancements in Self-Healing Techniques for Durable Infrastructure

Author:

Zeaiter Hussein1,Jahami Ali2,Khatib Jamal3

Affiliation:

1. Beirut Arab University

2. Lebanese American University

3. University of Wolverhampton

Abstract

Concrete is widely used in construction due to its durability and strength. However, structures made of concrete may weaken over time due to a variety of reasons, such as cracks, chemical attack, and environmental factors. This necessitates the development of new techniques to improve the lifespan and sustainability of concrete structures. Bio-concrete and self-healing techniques have emerged as viable approaches to address the challenges of concrete degradation. This literature review aims to provide a comprehensive overview of the advancements made in bio-concrete and self-healing technologies for concrete. The review begins by discussing the fundamental principles of bio-concrete, which is defined as the incorporation of bacteria or other microorganisms into the concrete matrix. These bacteria are capable of producing calcite precipitation, thereby sealing cracks and enhancing the concrete’s self-healing properties. Moreover, the review explores the mechanical and chemical characterization techniques used to assess the performance of bio-concrete as a self-healing concrete. It analyzes the results of various experimental studies and field applications that offer insights into the performance and effectiveness of these technologies under diverse environmental conditions. Overall, this literature review aims to consolidate the current knowledge and advancements in bio-concrete and self-healing technologies. The findings from this review can serve as a valuable resource for researchers, engineers, and practitioners involved in the design, construction, and maintenance of concrete infrastructure. This contribution ultimately promotes the development of more sustainable and durable concrete materials.

Publisher

Scientific Steps Group

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3