Effect of denoising methods for hyperspectral images classification: DnCNN, NGM, CSF, BM3D and Wiener

Author:

GÜNEN Mehmet Akif1ORCID,BEŞDOK Erkan2ORCID

Affiliation:

1. Gümüşhane Üniversitesi

2. ERCİYES ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

Hyperspectral images are widely used for land use/cover analysis in remote sensing due to their rich spectral information. However, these data often suffer from noise caused by various factors such as random and systematic errors, making them less useful for end-users. In this study, denoising methods (i.e., DnCNN, NGM, CSF, BM3D, and Wiener) for hyperspectral images were compared using the Pavia University hyperspectral dataset with four different noise types: Gaussian, Salt & Pepper, Poisson, and Speckle. After denoising, the k-nearest neighbor method was used to classify the image, and statistical and visual performance comparisons were performed on the classified data. Six performance metrics -Accuracy, Sensitivity, Specificity, Precision, F-Score, and G-Mean- were employed to compare the outcomes qualitatively. The findings demonstrate that DnCNN and BM3D have the best outcome performance for all four noise types. Due to their lack of sensitivity and specificity, the CSF and Wiener approaches had low performance for particular noise sources. For all noise types, the NGM approach had the worst results. The validated instruments not provide effective results when it came to denoising Salt & Pepper noise, but they managed to produce outstanding results when it came to denoising Poisson noise. In order to enhance the quality and usability of hyperspectral images for land use/cover analysis, this study emphasizes the significance of choosing an effective denoising technique.

Publisher

Mersin University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3